

10 NEURAL MODELS OF WORD REPRESENTATION

CSC2501/485 Fall 2015

Frank Rudzicz Toronto Rehabilitation Institute; University of Toronto

Copyright © 2015 Frank Rudzicz

DEEP MOTIVATIONS

- Brains have a deep architecture.
- Humans organize their ideas hierarchically, through composition of simpler ideas.
- Insufficiently deep architectures can be exponentially inefficient.
- Distributed (possibly sparse) representations are necessary to achieve non-local generalization.
- Multiple levels of latent variables allow combinatorial sharing of statistical strength.

ARCHITECTURAL DEPTH

10 NEURAL MODELS OF WORD REPRESENTATIONS :: CSC2501/485 :: SPRING 2015 :: FRANK RUDZICZ 3

ARCHITECTURAL DEPTH

GENERALIZATION FROM DEPTH

Generalizing better to new tasks is crucial to Al

Deep architectures learn good intermediate representations that can be shared across tasks

A good representation is one that makes sense for many tasks

CLASSIC CL — MEANING

```
Python 3.4.1... on win32
>>> from nltk.corpus import wordnet as wn
>>> platypus = wn.synset('platypus.n.01')
>>> hyper = lambda s: s.hypernyms()
>>> list(platypus.closure(hyper))
[Synset('monotreme.n.01'), Synset('prototherian.n.01'), Synset('mammal.n.01'),
Synset('vertebrate.n.01'), Synset('chordate.n.01'), Synset('animal.n.01'),
Synset('organism.n.01'), Synset('living_thing.n.01'), Synset('whole.n.02'),
Synset('object.n.01'), Synset('physical_entity.n.01'), Synset('entity.n.01')]
>>>
```

Well, this sort of representation can be applied to many different tasks...

CLASSIC CL — LEARNING

Classic NLP

Task: find all verbs in a sentence

E.g., ends on -ed, -ing, +front/high vowel

But what about spelling mistakes? Or slang?

E.g., ends on -edd, -in, -inn,...

You can NEVER define all features manually!

CLASSIC SPEECH

CLASSIC SPEECH

DEEP LEARNING IN SPEECH

10 NEURAL MODELS OF WORD REPRESENTATIONS :: CSC2501/485 :: SPRING 2015 :: FRANK RUDZICZ 12

WORDS

 Given a corpus with D (e.g., = 100K) unique words, the classical binary approach is to uniquely assign each word with an index in D-dimensional vectors ('one-hot' representation).

- Classic word-feature representation assigns features to each index.
 - E.g., 'VBG', 'positive', 'age-of-acquisition'.

 $d \ll D$

Is there a way to learn something like the latter?

PCA

SVD

Corpus

	а	as	chuck	could	how	if	much	Poo M	Woodch.	PInoM	•	ċ	a	as	chuck	could	how	if	much	P 00M	woodch.	would	
a	13	24	12	3	9	20	22	31	16	23 1	8 0	7	13	7	31	26	0	14	4	21	50	9 16	7 7
as	7	8	15	11	0	5	9	25	10	0	3 0	17	24	8	2	3	0	9	10	10	20	13 11	0 0
chuck	31	2	5	20	5	14	6	9	36	15 12	2 0	0	12	15	5	6	0	9	8	30	10	2 11	9 12
could	26	3	6	0	0	16	2	4	30	9 14	4 0	0	3	11	20	0	0	0	6	23	2	1 0	8 8
how	0	0	0	0	0	0	0	0	0	0 (0 0	0	9	0	5	0	0	3	10	9	7	8 4	0 0
if	14	9	9	0	3	0	8	11	16	15 20	0 0	2	20	5	14	16	0	0	3	14	18	0 0	5 5
much	4	10	8	6	10	3	0	8	5	0 2	2 0	9	22	9	6	2	0	8	0	20	18	15 10	0 0
wood	21	10	30	23	9	14	20	7	26	5 1	1 0	8	31	25	9	4	0	11	8	7	26	20 14 1	0 10
woodch.	50	20	10	2	7	18	18	26	13	20 1	5 0	5	16	10	36	30	0	16	5	26	13	10 18	9 9
would	9	13	2	1	8	0	15	20	10	0 (0 0	4	23	0	15	9	0	15	0	5	20	0 17	3 0
,	16	11	11	0	4	0	10	14	18	17 (0 0	3	18	3	12	14	0	20	2	11	16	0 0	4 4
	7	0	9	8	0	5	0	10	9	3 4	4 0	0	0	0	0	0	0	0	0	0	0	0 0	0 0
?	7	0	12	8	0	5	0	10	9	0 4	4 0	0	7	17	0	0	0	2	9	8	5	4 3	0 0

Co-occurrence

Rohde et al. (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. Communications of the ACM **8**:627-633.

-																										
		a	as	chuck	Could	how	ìf	much	P00M	woodch.	PInom			ċ	8	as	chuck	pinoo	how	ìf	much	PooM	Woodch.	PInom		۰.
	a	13	24	12	3	9	20	22	31	16	23 1	18 ()	7	13	7	31	26	0	14	4	21	50	91	6 7	7 7
	as	7	8	15	11	0	5	9	25	10	0	3 ()	17	24	8	2	3	0	9	10	10	20	13-1	1 () 0
chu	ck	31	2	5	20	5	14	6	9	36	15 1	12 ()	0	12	15	5	6	0	9	8	30	10	2 1	1 9) 12
cou	ıld	26	3	6	0	0	16	2	4	30	91	4 ()	0	3	11	20	0	0	0	6	23	2	1	0 8	8 8
he	ow	0	0	0	0	0	0	0	0	0	0	0 ()	0	9	0	5	0	0	3	10	9	7	8	4 (0 (
	if	14	9	9	0	3	0	8	11	16	15.2	20 ()	2	20	5	14	16	0	0	3	14	18	0	0 5	5 5
mu	ch	4	10	8	6	10	3	0	8	5	0	2 ()	9	22	9	6	2	0	8	0	20	18	15 1	0 0	0 (
wo	od	21	10	30	23	9	14	20	7	26	51	11 ()	8	31	25	9	4	0	11	8	7	26	20 1	4 10	0 10
woode	:h.	50	20	10	2	7	18	18	26	13	20 1	16 ()	5	16	10	36	30	0	16	5	26	13	10 1	8 9) 9
wou	ıld	9	13	2	1	8	0	15	20	10	0	0 ()	4	23	0	15	9	0	15	0	5	20	0 1	73	6 0
	,	16	11	11	0	4	0	10	14	18	17	0 ()	3	18	3	12	14	0	20	2	11	16	0	0 4	4
		7	0	9	8	0	5	0	10	9	3	4 ()	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (
	?	7	0	12	8	0	5	0	10	9	0	4 ()	0	7	17	0	0	0	2	9	8	5	4	3 (0 (
_																										

M =

 $A = U_{[:,1:2]} \Sigma_{[1:2,1:2]}$

	a	-0.44	-0.30	0.57	0.58	•••
	as	-0.13	-0.33	-0.59	0	•••
U =	chuck	-0.48	-0.51	-0.37	0	•••
	could	-0.70	0.35	0.15	-0.58	•••
		•••	•••	•••		

	2.16	0	0	0	•••
	0	1.59	0	0	• • •
$\Sigma =$	0	0	1.28	0	•••
	0	0	0	1	•••
	•••	•••	•••	•••	•••

Rohde et al. (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. Communications of the ACM **8**:627-633.

Communications of the ACM 8:627-633.

¹⁰ NEURAL MODELS OF WORD REPRESENTATIONS :: CSC2501/485 :: SPRING 2015 :: FRANK RUDZICZ 17

Rohde et al. (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. Communications of the ACM **8**:627-633.

PROBLEMS WITH SVD; INTRO TO WORD2VEC

- SVD: Computational costs scale quadratically with M. 'Hard' to incorporate new words.
- Word2vec: Don't capture co-occurrence directly Just try to predict surrounding words, baby.

 $P(w_{t+1} = yourself | w_t = kiss)$

LEARNING WORD REPRESENTATIONS

Word representations can be learned using the following objective function:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log P(w_{t+j} | w_t)$$

where w_t is the t^{th} word in a sequence of T wor

- This is closely related to word prediction.
 - "words of a feather flock together."
 - "you shall know a word by the company it keeps."
 J.R. Firth (1957)

ds.

LEARNING WORD REPRESENTATIONS

USING WORD REPRESENTATIONS

Without a latent space, kiss = [0,0,0,...,0,1,0,...,0], & hug = [0,0,0,...,0,0,1,...,0] so Similarity = cos(x, y) = 0.0

 $x \longrightarrow W_I$

In latent space,

kiss = $[0.8, 0.69, 0.4, ..., 0.05]_H$, & hug = $[0.9, 0.7, 0.43, ..., 0.05]_H$ so Similarity = $\cos(x, y) = 0.9$

Transform

 $v_w = x W_1$

H = 300

LINGUISTIC REGULARITIES IN WORD-VECTOR SPACE

Visualization of a vector space of the top 1000 words in Twitter

Trained on 400 million tweets having 5 billion words

LINGUISTIC REGULARITIES IN WORD-VECTOR SPACE

Trained on the Google news corpus with over 300 billion words.

LINGUISTIC REGULARITIES IN WORD-VECTOR SPACE

Expression	Nearest token
Paris – France + Italy	Rome
Bigger – big + cold	Colder
Sushi – Japan + Germany	bratwurst
Cu – copper + gold	Au
Windows – Microsoft + Google	Android

Analogies:apple:apples :: octopus:octopodesHypernymy:shirt:clothing :: chair:furnitureHa ha – isn't that nice? But it's easy to cherry-pick...

ACTUALLY DOING THE LEARNING

First, let's define what our parameters are. Given H-dimensional vectors, and V words:

$$\theta = \begin{bmatrix} v_{a} \\ v_{aardvark} \\ \vdots \\ v_{zymurgy} \\ V_{a} \\ V_{aardvark} \\ \vdots \\ V_{zymurgy} \end{bmatrix} \in \mathbb{R}^{2VH}$$

ACTUALLY DOING THE LEARNING

Many options. Gradient descent is popular. We want to optimize

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0}^{T} \log P(w_{t+j} | w_t)$$

And we want to update vectors $V_{w_{t+j}}$ then v_{w_t} within θ $\theta^{(new)} = \theta^{(old)} - \eta \nabla_{\theta} J(\theta)$

so we'll need to take the derivative of the (log of the) softmax function:

$$P(w_{t+j}|w_t) = \frac{\exp(V_{w_{t+j}}^{\dagger}v_{w_t})}{\sum_{w=1}^{W}\exp(V_{w}^{\dagger}v_{w_t})}$$

ACTUALLY DOING THE LEARNING

We need to take the derivative of the (log of the) softmax function:

$$\frac{\delta}{\delta v_{w_t}} \log P(w_{t+j}|w_t) = \frac{\delta}{\delta v_{w_t}} \log \frac{\exp(V_{w_{t+j}}^{\dagger} v_{w_t})}{\sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t})}$$
$$= \frac{\delta}{\delta v_{w_t}} \log \exp\left(V_{w_{t+j}}^{\dagger} v_{w_t}\right) - \log \sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t})$$
$$= V_{w_{t+j}} - \frac{\delta}{\delta v_{w_t}} \log \sum_{w=1}^{W} \exp(V_{w}^{\dagger} v_{w_t})$$
[apply the chain rule $\frac{\delta f}{\delta v_{w_t}} = \frac{\delta f}{\delta z} \frac{\delta z}{\delta v_{w_t}}$]
$$= V_{w_{t+j}} - \sum_{w=1}^{W} p(w|w_t) V_w$$

More details: <u>http://arxiv.org/pdf/1411.2738.pdf</u>

SMELL THE GLOVE

Global Vectors for Word representations is a popular alternative to word2vec.

Trained on the non-zero entries of a global word-word co-occurrence matrix.

$$J(\theta) = \frac{1}{2} \sum_{ij} f(P_{ij}) (w_i \cdot \widetilde{w_j} - \log P_{ij})^2$$

Fast and scalable. Same kinds of benefits

Words close to *frog*

4. leptodactylidae

5. rana

7. eleutherodactylus

http://nlp.stanford.edu/projects/glove/

LOOK AT THE GLOVE

LOOK AT THE GLOVE

LOOK AT THE GLOVE

RESULTS — NOTE THEY'RE ALL EXTRINSIC

Bengio et al 2001, 2003: beating N-grams on small datasets (Brown & APNews), but much slower.

Schwenk et al 2002,2004,2006: beating state-of-the-art largevocabulary speech recognizer using deep & distributed NLP model, with real-time speech recognition.

Morin & Bengio 2005, Blitzer et al 2005, Mnih & Hinton 2007,2009: better & faster models through hierarchical representations.

Collobert & Weston 2008: reaching or beating state-of-the-art in multiple NLP tasks (SRL, POS, NER, chunking) thanks to unsupervised pre-training and multi-task learning.

Bai et al 2009: ranking & semantic indexing (info retrieval).

SENTIMENT ANALYSIS

Traditional bag-of-words approach used dictionaries of happy and sad words, simple counts, and regression or simple binary classification.

But consider these:

Best movie of the year

Slick and entertaining, despite a weak script

Fun and sweet but ultimately unsatisfying

SENTIMENT ANALYSIS

We can combine **pairs** of words into **phrase** structures. Similarly, we can combine phrase and word structures hierarchically for classification.

TREE-BASED SENTIMENT ANALYSIS

RECURRENT NEURAL NETWORKS (RNNS)

An RNN has feedback connections in its structure so that it 'remembers' n previous inputs, when reading in a sequence.

(e.g., can use current word input with hidden units from previous word)

RECURRENT NEURAL NETWORKS (RNNS)

Elman network feed hidden units back

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

RNNS ON POS TAGGING

You can 'unroll' RNNs over time for various dynamic models, e.g., PoS tagging.

STATISTICAL MACHINE TRANSLATION

SMT is not as easy as PoS.

- 1. Lexical ambiguity ('kill the Queen' vs. 'kill the queen')
- 2. Different word orders ('the blue house' vs. 'la maison bleu')
- 3. Unpreserved syntax
- 4. Syntactic ambiguity
- 5. Idiosyncrasies ('estie de sacremouille')
- 6. Different sequence lengths across languages

MACHINE TRANSLATION WITH RNNS

Solution: Encode entire sentence into 1 vector representation, then decode.

MACHINE TRANSLATION WITH RNNS

Try it (<u>http://104.131.78.120/</u>). 30K vocabulary, 500M word training corpus (taking 5 days on GPUs) • All that good morphological/syntactic/semantic stuff we've seen earlier gets embedded into sentence vectors.

WRAP-UP

'Negative sampling':

'skip-gram':

n. contrast random 'correct' instances with negative similar examples.

n. the opposite of CBOW; it predicts the context given the centre word rather than the inverse.

With slide material from Yoshua Bengio, Fréderic Godin, Richard Socher, and others (where indicated).